今天我继续魔改一下,让该模型可以支持将gif动图或者视频,也做成卡通化效果。毕竟一张图可以那就带边视频也可以,没毛病。所以继给次元壁来了一拳,我在加两脚。
项目github地址:https://github.com/Hy-1990/hy-cartoon
除了上一篇文章中的依赖,还需要加一些其他依赖,requirements.txt如下:
核心代码
不废话了,先上gif代码。
gif动图卡通化
实现代码如下:
#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/5 18:10# @Author : 剑客阿良_ALiang# @Site :# @File : gif_cartoon_tool.py# !/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/5 0:26# @Author : 剑客阿良_ALiang# @Site :# @File : video_cartoon_tool.py# !/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/4 22:34# @Author : 剑客阿良_ALiang# @Site :# @File : image_cartoon_tool.pyfrom PIL import Image, ImageEnhance, ImageSequenceimport torchfrom torchvisin.transforms.functional import to_tensor, to_pil_imagefrom torch import nnimport osimport torch.nn.functional as Fimport uuidimport imageio# -------------------------- hy add 01 --------------------------class ConvNormLReLU(nn.Sequential):def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False):pad_layer = {"zero": nn.ZeroPad2d,"same": nn.ReplicationPad2d,"reflect": nn.ReflectionPad2d,}if pad_mode not in pad_layer:raise NotImplementedErrorsuper(ConvNormLReLU, self).__init__(pad_layer[pad_mode](padding),nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias),nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True),nn.LeakyReLU(0.2, inplace=True))class InvertedResBlock(nn.Module):def __init__(self, in_ch, out_ch, expansion_ratio=2):super(InvertedResBlock, self).__init__()self.use_res_connect = in_ch == out_chbottleneck = int(round(in_ch * expansion_ratio))layers = []if expansion_ratio != 1:layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0))# dwlayers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True))# pwlayers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False))layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True))self.layers = nn.Sequential(*layers)def forward(self, input):out = self.layers(input)if self.use_res_connect:out = input + outreturn outclass Generator(nn.Module):def __init__(self, ):super().__init__()self.block_a = nn.Sequential(ConvNormLReLU(3, 32, kernel_size=7, padding=3),ConvNormLReLU(32, 64, stride=2, padding=(0, 1, 0, 1)),ConvNormLReLU(64, 64))self.block_b = nn.Sequential(ConvNormLReLU(64, 128, stride=2, padding=(0, 1, 0, 1)),ConvNormLReLU(128, 128))self.block_c = nn.Sequential(ConvNormLReLU(128, 128),InvertedResBlock(128, 256, 2),InvertedResBlock(256, 256, 2),InvertedResBlock(256, 256, 2),InvertedResBlock(256, 256, 2),ConvNormLReLU(256, 128),)self.block_d = nn.Sequential(ConvNormLReLU(128, 128),ConvNormLReLU(128, 128))self.block_e = nn.Sequential(ConvNormLReLU(128, 64),ConvNormLReLU(64, 64),ConvNormLReLU(64, 32, kernel_size=7, padding=3))self.out_layer = nn.Sequential(nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False),nn.Tanh())def forward(self, input, align_corners=True):out = self.block_a(input)half_size = out.size()[-2:]out = self.block_b(out)out = self.block_c(out)if align_corners:out = F.interpolate(out, half_size, mode="bilinear", align_corners=True)else:out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)out = self.block_d(out)if align_corners:out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True)else:out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)out = self.block_e(out)out = self.out_layer(out)return out# -------------------------- hy add 02 --------------------------def handle(gif_path: str, output_dir: str, type: int, device='cpu'):_ext = os.path.basename(gif_path).strip().split('.')[-1]if type == 1:_checkpoint = './weights/paprika.pt'elif type == 2:_checkpoint = './weights/face_paint_512_v1.pt'elif type == 3:_checkpoint = './weights/face_paint_512_v2.pt'elif type == 4:_checkpoint = './weights/celeba_distill.pt'else:raise Exception('type not support')os.makedirs(output_dir, exist_ok=True)net = Generator()net.load_state_dict(torch.load(_checkpoint, map_location="cpu"))net.to(device).eval()result = os.path.join(output_dir, '{}.{}'.format(uuid.uuid1().hex, _ext))img = Image.open(gif_path)out_images = []for frame in ImageSequence.Iterator(img):frame = frame.convert("RGB")with torch.no_grad():image = to_tensor(frame).unsqueeze(0) * 2 - 1out = net(image.to(device), False).cpu()out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5out = to_pil_image(out)out_images.append(out)# out_images[0].save(result, save_all=True, loop=True, append_images=out_images[1:], duration=100)imageio.mimsave(result, out_images, fps=15)return resultif __name__ == '__main__':print(handle('samples/gif/128.gif', 'samples/gif_result/', 3, 'cuda'))
1、主要的handle方法入参分别为:gif地址、输出目录、类型、设备使用(默认cpu,可选cuda使用显卡)。
2、类型主要是选择模型,最好用3,人像处理更生动一些。
下面是我准备的gif素材
执行结果如下:
看一下效果:
实现代码如下:
#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/5 0:26# @Author : 剑客阿良_ALiang# @Site :# @File : video_cartoon_tool.py# !/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/4 22:34# @Author : 剑客阿良_ALiang# @Site :# @File : image_cartoon_tool.pyfrom PIL import Image, ImageEnhanceimport torchfrom torchvision.transforms.functional import to_tensor, to_pil_imagefrom torch import nnimport osimport torch.nn.functional as Fimport uuidimport cv2import numpy as npimport timefrom ffmpy import FFmpeg# -------------------------- hy add 01 --------------------------class ConvNormLReLU(nn.Sequential):def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False):pad_layer = {"zero": nn.ZeroPad2d,"same": nn.ReplicationPad2d,"reflect": nn.ReflectionPad2d,}if pad_mode not in pad_layer:raise NotImplementedErrorsuper(ConvNormLReLU, self).__init__(pad_layer[pad_mode](padding),nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias),nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True),nn.LeakyReLU(0.2, inplace=True))class InvertedResBlock(nn.Module):def __init__(self, in_ch, out_ch, expansion_ratio=2):super(InvertedResBlock, self).__init__()self.use_res_connect = in_ch == out_chbottleneck = int(round(in_ch * expansion_ratio))layers = []if expansion_ratio != 1:layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0))# dwlayers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True))# pwlayers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False))layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True))self.layers = nn.Sequential(*layers)def forward(self, input):out = self.layers(input)if self.use_res_connect:out = input + outreturn outclass Generator(nn.Module):def __init__(self, ):super().__init__()self.block_a = nn.Sequential(ConvNormLReLU(3, 32, kernel_size=7, padding=3),ConvNormLReLU(32, 64, stride=2, padding=(0, 1, 0, 1)),ConvNormLReLU(64, 64))self.block_b = nn.Sequential(ConvNormLReLU(64, 128, stride=2, padding=(0, 1, 0, 1)),ConvNormLReLU(128, 128))self.block_c = nn.Sequential(ConvNormLReLU(128, 128),InvertedResBlock(128, 256, 2),InvertedResBlock(256, 256, 2),InvertedResBlock(256, 256, 2),InvertedResBlock(256, 256, 2),ConvNormLReLU(256, 128),)self.block_d = nn.Sequential(ConvNormLReLU(128, 128),ConvNormLReLU(128, 128))self.block_e = nn.Sequential(ConvNormLReLU(128, 64),ConvNormLReLU(64, 64),ConvNormLReLU(64, 32, kernel_size=7, padding=3))self.out_layer = nn.Sequential(nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False),nn.Tanh())def forward(self, input, align_corners=True):out = self.block_a(input)half_size = out.size()[-2:]out = self.block_b(out)out = self.block_c(out)if align_corners:out = F.interpolate(out, half_size, mode="bilinear", align_corners=True)else:out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)out = self.block_d(out)if align_corners:out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True)else:out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)out = self.block_e(out)out = self.out_layer(out)return out# -------------------------- hy add 02 --------------------------def handle(video_path: str, output_dir: str, type: int, fps: int, device='cpu'):_ext = os.path.basename(video_path).strip().split('.')[-1]if type == 1:_checkpoint = './weights/paprika.pt'elif type == 2:_checkpoint = './weights/face_paint_512_v1.pt'elif type == 3:_checkpoint = './weights/face_paint_512_v2.pt'elif type == 4:_checkpoint = './weights/celeba_distill.pt'else:raise Exception('type not support')os.makedirs(output_dir, exist_ok=True)# 获取视频音频_audio = extract(video_path, output_dir, 'wav')net = Generator()net.load_state_dict(torch.load(_checkpoint, map_location="cpu"))net.to(device).eval()result = os.path.join(output_dir, '{}.{}'.format(uuid.uuid1().hex, _ext))capture = cv2.VideoCapture(video_path)size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))print(size)videoWriter = cv2.VideoWriter(result, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)cul = 0with torch.no_grad():while True:ret, frame = capture.read()if ret:print(ret)image = to_tensor(frame).unsqueeze(0) * 2 - 1out = net(image.to(device), False).cpu()out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5out = to_pil_image(out)contrast_enhancer = ImageEnhance.Contrast(out)img_enhanced_image = contrast_enhancer.enhance(2)enhanced_image = np.asarray(img_enhanced_image)videoWriter.write(enhanced_image)cul += 1print('第{}张图'.format(cul))else:breakvideoWriter.release()# 视频添加原音频_final_video = video_add_audio(result, _audio, output_dir)return _final_video# -------------------------- hy add 03 --------------------------def extract(video_path: str, tmp_dir: str, ext: str):file_name = '.'.join(os.path.basename(video_path).split('.')[0:-1])print('文件名:{},提取音频'.format(file_name))if ext == 'mp3':return _run_ffmpeg(video_path, os.path.join(tmp_dir, '{}.{}'.format(uuid.uuid1().hex, ext)), 'mp3')if ext == 'wav':return _run_ffmpeg(video_path, os.path.join(tmp_dir, '{}.{}'.format(uuid.uuid1().hex, ext)), 'wav')def _run_ffmpeg(video_path: str, audio_path: str, format: str):ff = FFmpeg(inputs={video_path: None},outputs={audio_path: '-f {} -vn'.format(format)})print(ff.cmd)ff.run()return audio_path# 视频添加音频def video_add_audio(video_path: str, audio_path: str, output_dir: str):_ext_video = os.path.basename(video_path).strip().split('.')[-1]_ext_audio = os.path.basename(audio_path).strip().split('.')[-1]if _ext_audio not in ['mp3', 'wav']:raise Exception('audio format not support')_codec = 'copy'if _ext_audio == 'wav':_codec = 'aac'result = os.path.join(output_dir, '{}.{}'.format(uuid.uuid4(), _ext_video))ff = FFmpeg(inputs={video_path: None, audio_path: None},outputs={result: '-map 0:v -map 1:a -c:v copy -c:a {} -shortest'.format(_codec)})print(ff.cmd)ff.run()return resultif __name__ == '__main__':print(handle('samples/video/981.mp4', 'samples/video_result/', 3, 25, 'cuda'))
1、主要的实现方法入参分别为:视频地址、输出目录、类型、fps(帧率)、设备类型(默认cpu,可选择cuda显卡模式)。
2、类型主要是选择模型,最好用3,人像处理更生动一些。
3、代码设计思路:先将视频音频提取出来、将视频逐帧处理后写入新视频、新视频和原视频音频融合。
4、视频中间会产生临时文件,没有清理,如需要可以修改代码自行清理。
下面是我准备的视频素材截图,我会上传到github上。
执行结果
看看效果截图
还是很不错的哦。
这次可不是没什么好总结的,总结的东西蛮多的。首先我说一下这个开源项目目前模型的一些问题。
1、我测试了不少图片,总的来说对亚洲人的脸型不能很好的卡通化,但是欧美的脸型都比较好。所以还是训练的数据不是很够,但是能理解,毕竟要专门做卡通化的标注数据想想就是蛮头疼的事。所以我建议大家在使用的时候,多关注一下项目是否更新了最新的模型。
2、视频一但有字幕,会对字幕也做处理。所以可以考虑找一些视频和字幕分开的素材,效果会更好一些。
分享
点收藏
点点赞
点在看
文章转发自AI科技大本营微信公众号,版权归其所有。文章内容不代表本站立场和任何投资暗示。
Copyright © 2021.Company 元宇宙YITB.COM All rights reserved.元宇宙YITB.COM